

UNIVERSITY OF LINCOLN

A role for bovine colostrum in supporting human immune function

Dr Arwel Jones Food Matters Live 2017

> Lincoln Institute for Health arjones@lincoln.ac.uk

Outline

- What is bovine colostrum?
- What do we know about bovine colostrum and human immune health?
- What are the future research directions of bovine colostrum and immune health?

First milk produced by a cow, usually collected in the 48 h following parturition. Contains:

- Antimicrobial / Immune factors
 - Immunoglobulins
 - Antimicrobial peptides (Lysozyme and Lactoferrin)
 - Oligosaccharides
 - Glycoconjugates
- Growth factors
 - Epidermal Growth Factor
 - Insulin-like Growth Factor
 - Transforming Growth Factor

...not an exhaustive list and likely precursor of numerous potential biologically active peptides upon digestion

- Greatest bioactivity and potential as nutriceutical for other species – collection < 6 h post-partum
- Bovine colostrum supplements prepared as powdered, liquid, capsule formulations

Immune health

Clinical Symptoms

In vivo integrated immune responses

Ex vivo immune responses

In vitro immune responses

Albers et al.(2005, 2013), Br J Nutr

In vitro / ex vivo immune markers

- Exercise is a controllable, experimental model of stress on immune health
- Prolonged exercise induces a transient period ('open window') of immunodepression
- 4 weeks of 20g/day can blunt effects or improve recovery of function of innate blood leukocytes

In vitro immune markers

- Salivary/Secretory IgA:
 - Increased (Appukutty et al., 2010; Crooks et al., 2006; Mero et al., 2002)
 - No change (Crooks et al., 2010; Davison and Diment, 2010; Jones et al., 2014, 2015; Patiroglu and Kondolot, 2013; Shing et al., 2007, 2013)
- Salivary Lactoferrin:
 - No change (Jones et al., 2014, 2015)
- Salivary Lysozyme
 - Increased (Davison and Diment, 2010; Jones et al in preparation)
 - No change (Jones et al., 2014; 2015)

In vitro / in vivo immune marker?

First study on salivary microbiome in athletes relevant marker of *in vivo* (innate) immune status?

Real-time quantitative PCR, targeting the 16S rRNA gene

Increase in salivary bacterial load over the 12 weeks period with PLA (*p* < 0.05) which was limited by colostrum

No change in saliva bacterial diversity

Jones et al (2014), Brain, Behav Immun

In vivo markers

4 weeks supplementation (20 g per day):

Colostrum (COL) (n = 15) vs. isocaloric/isomacronutrient placebo (PLA) (n= 16)

2 h running at 60% maximal oxygen uptake (VO2 max)

20 min post-exercise: Sensitisation with 0.125% DPCP via patch applied to lower back for 48 h

4 weeks supplementation (20 g per day): COL vs. PLA

Elicitation (recall) – Dose series of DPCP patches applied to right upper arm for 6 h: 0%, 0.0048%, 0.0076%, 0.0122%, 0.01953% & 0.03125%

Skin oedema measurements: Modified skinfold calliper

Jones et al (under review)

In vivo markers

Bovine colostrum – Respiratory illness

Jones, AW, Cameron, SJS, Thatcher R, Beecroft MS, Mur LAJ, Davison G. (2014). Effects of bovine colostrum supplementation on upper respiratory illness in active males. Brain Behavior and Immun, 39, 194-203.

During winter months, under double-blind procedures, 53 males were randomized to daily supplementation of 20 g of colostrum (n = 25) or an isoenergetic/isomacronutrient placebo (n = 28) for 12 weeks

Bovine colostrum – Respiratory illness

- Supplementation may provide immunological benefits but further studies are warranted before recommendations can be made for clinical applications? (Rathe et al., 2014)
- Level of evidence used in support of its claims falls below that acceptable in the medical and scientific community....

Bovine colostrum – Respiratory illness

Jones AW, March DS, Curtis F, Bridle C. (2016) Bovine colostrum supplementation and upper respiratory tract symptoms during exercise training: a systematic review and meta-analysis of randomised controlled trials. BMC Sports Science, Medicine and Rehabilitation DOI: 10.1186/s13102-016-0047-8

					Rate Ratio		Rate Ratio	
	Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
URS days	Crooks 2006	-0.4	0.13	30.5%	0.67 [0.52, 0.86]			
	Crooks 2010	-0.92	0.14	29.1%	0.40 [0.30, 0.52]		_ _	
	Jones 2014	-0.51	0.2	21.6%	0.60 [0.41, 0.89]		_	
	Shing 2007	-0.51	0.28	14.6%	0.60 [0.35, 1.04]			
	Shing 2013	-0.29	0.61	4.2%	0.75 [0.23, 2.47]			
	Total (95% CI)			100.0%	0.56 [0.43, 0.72]		•	
	Heterogeneity: Tau ² =	= 0.04; Chi ² = 8.15	, df =	4 (P = 0.	09); $I^2 = 51\%$			1
	Test for overall effect	Z = 4.47 (P < 0.0)	0001)			0.1	0.2 0.5 1 2 5 1 Favours [Colostrum] Favours [Placebo]	.0
					Rate Ratio		Rate Ratio	
URS episodes	Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
	Crooks 2006	-0.29	0.35	44.6%	0.75 [0.38, 1.49]			
	Jones 2014	-0.56	0.37	39.9%	0.57 [0.28, 1.18]			
	Shing 2007	-0.91	0.68	11.8%	0.40 [0.11, 1.53]			
	Shing 2013	-0.29	1.22	3.7%	0.75 [0.07, 8.18]			
	Total (95% CI)			100.0%	0.62 [0.39, 0.99]		•	
	Heterogeneity: Tau ² = Test for overall effect	= 0.00; $Chi^2 = 0.76$:: Z = 2.02 (P = 0.0	5, df =)4)	= 3 (P = 0	.86); $I^2 = 0\%$	0.01	0.1 1 10 1 Favours [Colostrum] Favours [Placebo]	00

Over an 8-12 week follow-up period, bovine colostrum supplementation when compared to placebo significantly reduced the incidence rate of URS days (rate ratio 0.56, 95% confidence intervals 0.43 to 0.72, P value < 0.001) and URS episodes (0.62, 0.40 to 0.99, P value = 0.04) by 44% and 38% respectively.

"Colostrum is not specifically prohibited, however it can contain certain quantities of IGF-1 and other growth factors which are prohibited and can influence the outcome of anti-doping tests. Therefore, WADA does not recommend the ingestion of this product."

• IGF-1 ①?

Jones et al (in preparation)

• IGF-1 ①?

Jones et al (in preparation)

Bovine colostrum – Future directions

- Confirmation of underlying mechanisms/ "active ingredients"
- Defining minimal and optimal doses

● PLA at Baseline | ■ COL at Baseline | ● PLA at 12 weeks | ■ COL at 12 weeks |

 Follow up on preliminary evidence in other at-risk groups (e.g. immune deficient children, older adults) where colostrum has reduced incidence and severity (e.g. hospitalisation) of respiratory infections

Summary

- Bovine colostrum: rich in antimicrobial, growth and immune factors
- Benefits in immune health observed from in vitro testing to clinically relevant in vivo markers
- Most human data limited to athlete populations, huge potential for other (wider) populations (e.g. immunopcompromised, older adults)

Thank you for listening. Any questions...now or later?

Acknowledgements

Dr Glen Davison Dr Rhys Thatcher Dr Daniel March Dr Bethany Diment Dr Simon Cameron Prof Neil Walsh Prof Luis Mur

Dr Arwel Jones arjones@lincoln.ac.uk

